Classification of Gimbal Stabilizer Products Using Naive Bayes Classification

نویسندگان

چکیده

Menjadi videografer adalah hobi yang populer di masa pandemi ini karena berkreasi dalam bentuk video dan konten YouTube menjadi alternatif selain sekedar mengisi waktu luang atau menghasilkan uang. Untuk mendukung kamera diperlukan perangkat pendukung, hal seiring berjalannya mumpuni juga bisa didapatkan dari smartphone, teknologi tersebut harus diimbangi dengan kemampuan pengguna mengoperasikannya. Gimbal Stabilizer salah satu jawabannya, menggunakan gimbal stabilizer dapat meredam getaran sehingga gambar dihasilkan lebih maksimal. Banyak website memberikan informasi tentang produk banyak ulasan pengguna. Oleh itu, analisis sentimen merupakan solusi untuk masalah pengelompokan opini review positif negatif secara otomatis berdasarkan mendapatkan penilaian penggunaan diberikan melalui produk, kami akan mencoba menguji parameter n gram pada tahap pre-processing, k-fold cross validation penerapan particle swarm optimization meningkatkan akurasi metode Naive Bayes. Hasil tester sebesar 84,42. Becoming a videographer is popular hobby during this pandemic because creating works in the form of videos and content on an alternative to just filling your spare time or making money. To support camera, supporting device needed, case, as goes by, capable camera can also be obtained from smartphone devices, technology must balanced with user’s ability operate it. one answers, using it reduce vibrations so that resulting image maximized. Many websites provide information about products by providing lot images user reviews. Therefore, sentiment analysis solution problem grouping opinions reviews into positive negative automatically based get assessment use gimbals provided through product reviews, we will try test parameters produce grams at pre-processing stage, application increase accuracy Bayes method. The results 84.42

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Research Domain Selection using Naive Bayes Classification

Research Domain Selection plays an important role for researchers to identify a particular document based on their discipline or research areas. This paper presents a framework which consists of two phases. In the first phase, a word list is constructed for each area of the research paper. In the second phase, the word list is continuously updated based on the new domains of research documents....

متن کامل

Naive-Bayes for Sentiment Classification

This report details the findings in building a naive Bayes sentiment classifier for a IMDB movie-review data set using Scala and ScalaNLP. We studied the unigram or bagof-words Bernoulli and Multinomial models and a number of different feature selection techniques, including term frequency, mutual information and Chi-squared. 1. DATA CORPUS The corpus contains of 2000 rated movie reviews, compr...

متن کامل

Survey of Improving Naive Bayes for Classification

The attribute conditional independence assumption of naive Bayes essentially ignores attribute dependencies and is often violated. On the other hand, although a Bayesian network can represent arbitrary attribute dependencies, learning an optimal Bayesian network classifier from data is intractable. Thus, learning improved naive Bayes has attracted much attention from researchers and presented m...

متن کامل

Classification of Web Documents Using a Naive Bayes Method

This paper presents an automatic document classification system, WebDoc, which classifies Web documents according to the Library of Congress classification scheme. WebDoc constructs a knowledge base from the training data and then classifies the documents based on information in the knowledge base. One of the classification algorithms used in WebDoc is based on Bayes’ theorem from probability t...

متن کامل

Naive Bayes Classification for Subset Selection

This article focuses on the question of learning how to automatically select a subset of items among a bigger set. We introduce a methodology for the inference of ensembles of discrete values, based on the Naive Bayes assumption. Our motivation stems from practical use cases where one wishes to predict an unordered set of (possibly interdependent) values from a set of observed features. This pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Jurnal Informatika

سال: 2022

ISSN: ['1411-0105', '2528-5823']

DOI: https://doi.org/10.31294/inf.v9i2.14064